Google Colab and Auto-sklearn with Profiling

X, y, coeff = make_regression(
n_samples=1000,
n_features=100,
n_informative=5,
noise=0,
shuffle=False,
coef=True
)
Subset of 100 generated features
import autosklearn.regressionautoml = autosklearn.regression.AutoSklearnRegressor(
time_left_for_this_task=300,
n_jobs=-1
)
automl.fit(
X_train_transformed,
df_train["label"]
)
predictions = automl.predict(X_train_transformed)
r2_score(df_train["label"], predictions)
>> 0.999
predictions = automl.predict(X_test_transformed)
r2_score(df_test["label"], predictions)
>> 0.999
PipelineProfiler output

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store